Theorem/Results Reference Sheet

Please remove this sheet before submitting your final exam.

Divergence Test

If $\lim_{n \to \infty} a_n \neq 0$, then $\sum_{n=n_0}^{\infty} a_n$ diverges.

Geometric Series Test

 $\sum_{n=n_0}^{\infty}ar^n \text{ converges if and only if } |r|<1.$ If |r|<1, $\sum_{n=n_0}^{\infty}ar^n=\frac{ar^{n_0}}{1-r}$

p-Series Test

 $\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges}$ if and only if p > 1

Integral Test

If f(x) is positive, continuous, decreasing on $[n_0, \infty)$, then

the series $\sum_{n=n_0}^{\infty} f(n)$ converges if and only if the improper integral $\int_{n_0}^{\infty} f(x) dx$ converges.

Comparison Test

Let a_n and b_n be such that $0 \le a_n \le b_n$ for all $n \ge n_0$.

If $\sum a_n$ is divergent, then $\sum b_n$ is divergent. If $\sum b_n$ is convergent, then $\sum a_n$ is convergent.

Limit Comparison Test

Let $a_n, b_n \ge 0$ for all n and let $c = \lim_{n \to \infty} \frac{a_n}{b_n}$. If $0 < c < \infty$, then $\sum a_n$ and $\sum b_n$

both converge or both diverge.

Alternating Series Test and Alternating Series Estimation Theorem

If (1) $b_n > 0$ for all $n \ge n_0$, and (2) $b_{n+1} \le b_n$ for all $n \ge n_0$ (i.e. b_n is decreasing), and (3) $\lim_{n \to \infty} b_n = 0$,

then
$$S = \sum_{n=n_0}^{\infty} (-1)^{n-1} b_n$$
 converges and for all $N \ge n_0$, $|S - S_N| = \left| S - \sum_{n=n_0}^{N} (-1)^{n-1} b_n \right| < b_{N+1}$.

Ratio Test

Let $S = \sum a_n$ be some series and let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$

- (i) If L < 1, the series is absolutely convergent.
- (ii) If L=1, the Ratio Test is inconclusive.
- (iii) If L > 1 or $L = \infty$, the series is divergent.

Root Test

Let $S = \sum a_n$ be some series and let $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$

- (i) If L < 1, the series is absolutely convergent.
- (ii) If L = 1, the Root Test is inconclusive.
- (iii) If L > 1 or $L = \infty$, the series is divergent.

Important Power Series Representations

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \text{ on } (-1,1) \quad \sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \text{ on } \mathbb{R}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \text{ on } \mathbb{R} \qquad \cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \text{ on } \mathbb{R}$$

Taylor's Inequality

Let
$$T_n(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
. Then,

$$|R_n(x)| = |f(x) - T_n(x)| < \frac{|x - a|^{n+1}}{(n+1)!}(M)$$

for any M>0 such that for all $n\geq 0,$ $f^{(n+1)}(t)\leq M \text{ for all } t\in [0,x].$