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Divergence Test Geometric Series Test p-Series Test
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then Z a, diverges.
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Integral Test

If f(x) is positive, continuous, decreasing on [ng, 00), then
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the series Z f(n) converges if and only if the improper integral / f(x) dx converges.
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Comparison Test

Limit Comparison Test

Let a,, and b,, be such that 0 < a,, < b, for all n > nyg.
If Z a, is divergent, then Z by, is divergent.
If Z b, is convergent, then Z a, 18 convergent.

Let ap, by > 0 for all n and let ¢ = lim 2.
n—o0 n

If 0 < ¢ < o0, then Zan and an

both converge or both diverge.

Alternating Series Test and Alternating Series Estimation Theorem

If (1) by, > 0 for all n > ng, and (2) b1 < by, for all n > ng (i.e. by, is decreasing), and (3) lim b, =0,
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then § = " (~1)""'b, converges and for all N > ng, | S — Sy | =|S— Y (=1)" 'bn| < bny1.
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Ratio Test Root Test
Let S = Z ay, be some series and let L = lim i Let S = Z ay be some series and let L = le Van|
n—o00 (025 n—roo

(i) If L < 1, the series is absolutely convergent.
(ii) If L =1, the Root Test is inconclusive.
(iii) If L > 1 or L = oo, the series is divergent.

(i) If L < 1, the series is absolutely convergent.
(ii) If L = 1, the Ratio Test is inconclusive.
(iii) If L > 1 or L = oo, the series is divergent.

Important Power Series Representations Taylor’s Inequality
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- - Let T, (x) = Z / '(a) (x —a)". Then,
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Z n! = (2n)! for any M > 0 such that for all n > 0,
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FOHD (@) < M for all t € [0, z].
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